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ABSTRACT

Perturbation expansions for treating nonlinear oscillation problems
are presented. These expansions are based on a transformation similar to
that of the Lie transforms described by Deprit. A combination of the ob-
tained expansions and expansions based on Lie transforms is also suggested
for those problems which are mainly represented by a Hamiltonian with some

smaller perturbing forces nonderivable from a potential.
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Chapter I

INTRODUCT ION

Consider the nonlinear oscillatory dynamical system represented by

the Lagrange equations

d t . .. .
H'Ed - Eq = €Q (q,q,t;€) , 1)

where ¢q is the generalized coordinate vector, t is the independent
variable, ¢ is a small parameter, £(q,q,t;€) =T -V is the Lagran-
gian, T and V are the system kinetic and potential energies, and

eQ'(q,d,t;e) is the generalized perturbing force vector nonderivable

from a potential.

Now, define the generalized momentum vector as

p = B‘i ’ 2)

and the Hamiltonian R as
R=p-+«-g-8& . 3)
In view of (1) and (2), the variation ®R of R has the form
B3R = - [f) - EQ(q,p,t;E)] % + 4 +dp , (4

where Q(q,p,t;€) is the vector formed by substituting the d¢(q,p,t)
obtained from (2) into Q'(q,d,t;€). Equation (4) now yields

4 =R (5a)

[T
Il

- Rq + €Q(q,p, t;€) . (5b)



Many of the problems which can be formulated mathematically like
(5) cannot be solved exactly for an arbitrary ¢, - hence their solutions
might be sought by perturbation methods. Here, as a powerful perturba-
tion method, we consider the method of variation of parameters. The
first step in this method is to find ¢ = eo (¢ can be normalized so

that €, = 0) for which the reduced problem

O
I

Rp(q,p;O) (5¢)

e

= —Rq(q, P,O) (54)

can be solved exactly in the canonical form

q(x,X)

Q
Il

(6)
= p(x,X) .

o]
|

Here, x and X are the new generalized coordinate and momentum vectors,

respectively, related to the constants of motion of the unperturbed system.

The second step in the method of variation of parameters is to con-
sider (6) a canonical transformation for the original problem (56). Since

this transformation is canonical, it should satisfy the constraint
q -8 -p 5 -8R=x-+08X-X-+8x~-08H , (7)

where

- R|q=q(x,X)
P=pP (X’ X)

is the new Hamiltonian. ©Now, to allow for the additional vector
€Q(aq,p,t; €) in (5b), we should add €Q - &g to both sides of (7) which

now vanishes due to (4); this leads to the standard form



;|

e

M T

szX—GQ'qX-’
(8)
X=- Hx + €Q - qx ’
where
= ), £ € o 9
Q=Q@pt| oy (9
p=p(x’X)
If we define the functions fl and fz.'such that
fle—-Q.qX
(10)
f2 =Q- A * flx !
then an equivalent way of writing (8) is
x = (H + ef,)
1 X
a1
X =-(H + efl)x + efz .

For (8) or (11), the third step in the method of variation of param-
eters is to transform to new coordinates and momenta in order to eliminate
some undesirable terms (e.g., 'short-period terms) from the right-hand side
of these equations. This elimination reduces (8) or (11) to a simpler
form which, in most cases, can be solved to conclude the fourth step in -

the method of variation of parameters.

For the case when fz =0 (or Q = 0), the theory of.per§urbation,:
based on Lie transforms suggested by Deprit [1], can be used [2]. On the
other hand, if f2 £0 (or Q# 0), the above theory is no longer appli-
cable due to the fact that more than one independently chosen generating
function is needed in order to eliminate all the undesirable terms from

(8) or (11).



In some problems, noncanonical variables represent a more convenient
choice over the canonical ones [3,4]; consequently, one should use a
non~Hamiltonian formulation and apply a method of averaging like that of
Krylov and Bogoliubov [5] to eliminate the undesirable terms (e.g., short-

period terms).

When the Krylov-~Bogoliubov method is applied to the majority of the
problems of theoretical physics, there is no need for the computation of
the effect of higher orders. Normally, only the effects of the first and
second orders, rarely those of the third order, are computed. The stan-
dard representation of the method does not go beyond these limits. How-
ever, in some problems where the formal solution is slowly converging,
this accuracy is insufficient and higher-order approximations are needed
to secure the necessary accuracy. A computation scheme for these higher-
order effects for certain nonlinear resonant problems was first obtained

by Musen [6].

Recently, it was discovered that the algebraic analysis can be
carried out on the computer [7,8]. Consequently, simplified formulae
suitable for this purpose, as well as reductions in the computation re-
quirements, are now desired. Further exposition is aimed toward these
achievements. 1In generating our perturbation scheme, we shall use a
non-Hamiltonian formulation to apply the resulting algorithm to a wider

class of problems.

In the present method, we differ from Krylov-Bogoliubov [5] and
Musen [6] in the way we obtain the perturbation expansions. Here, the
expansions are based on a transformation generated by a vector W simi-
lar to the generating function in canonical transformations depending on
a small parameter [1,2]. This technique has the advantage of obtaining
simplified general expansions for the construction of the transformed
differential equations, the forward and the inverse mappings, and any

function of the original variables in terms of the new variables.

Due to the similarity between the proposed transformation and the
Lie transforms [1], it is shown that the theory of perturbation, based

on Lie transforms, is an important, special case of the present theory.



In this special case, the generating vector W is derived from a scalar
generating function so that the canonic form of the differential system
of equations is preserved throughout the transformation. In the conclud-

ing sections of this exposition, the procedure is outlined and two exam-

ples are presented.






Chapter I1I

GENERAL EXPANSIONS

It is assumed that the first and second steps of the method of vari-
ation of parameters, outlined in the introduction (see also the example
given in Chapter V), led to the system of differential equations in the

standard form

o0 n
x = f(x;€) = 2 j— £ (12)

n=0

In the above equation, x stands for a state vector which represents‘the
constants of motion of the undisturbed system and possibly the independent

variable t.

In the third step of the method of variation of parameters, it is

desirable to transform the original state vector x to a new vector x

which satisfies a simpler system of differential equatiomns, i.e.,

. 00 n
X = g(x;€) = Z n€— gn(;) , 13)

n=0

in which g(;;e) contains only some desirable terms. As will become
clearer in the course of the analysis, such a desirable transformation
can be generated by using the generating vector W(x;7n), defined by the

differential equations

dx

dn

wx;n) |, (14)

whose initial conditions at 71 =0 are x = X(t; ). Note that n isa

varying small parameter and we seek solutions at 1 = €.



Now, take any indefinitely differentiable vector F(x;¢) that can

be expressed in terms of x and € as a power series in ¢, in the

form
[>2] n
F(x;e) = 2 EF o), (15a)
n! n
n=0
where
an
F x) =]|— F&;m) . (15b)
n n
on

n=0

Then, in terms of x and € as a power series in €, this takes the

form of
0 n (n)
' F(x;e) = Z IE]:—, F (x) , (16a)
n=0
where
n
F(n)(;) = iL; F(x; 1) , (16b)
dn =0
and
oy =L, p & a7)
dr LT x df

0) — —_
Note that Fo(x) = F(x;0) and F( )(x) = F(x;0). Now, given the se-

quence of vectors Fn(x) of (15a), we wish to construct the correspond-
ing sequence of vectors F(n)(;) of (16a). This will be the subject of

what follows.

Using (14), equation (17) can be written as



where

Lw

dF OF
dn G5m) = 3 T W
is a linear operator defined by

LwF(x;n) =F_ - w(x; )

In particular, for the generating vector W

and for

where

and

o] n
Wix;n) = z dw

n! n+l
n=0

F(x;€) of the form given by (15a),

of the form

x)

Eq. (18) yields

[os) n
dF . _ 1 (1)
dn G ) = n! Fn SO
n=0
n
) _ n
F G = Forr ¥ 25 Cn Lm+1 Foem
m=0
n n!
Cm m!(-m)! ’
LFx)=F . W, &), i>1 .
i x i =
ains

In general, for k >1 and n >0, one obt

(18)

(19)

(20)

(21)

(22a)

(22b)

(22c¢)

(23)



where

n
Py = &) EE c?r &L (24)

n n+1 m m+l " n-m
=0

By allowing mn = 0 in the above equation, the following recursion formu-
la is obtained; except for the redefinition of the operator L, this

formula is essentially the same as Deprit's equation [2].

n
r ) = D, 25 i TR A (25)

n n+l m m+l "n-m
m=0

where

LF(x) = F— * W, (%) , i>1 . (26)
1 X 1 -

In the above recursion relation, we have

x) )

(0)
F 0

n

(x) = F &), and F,MG) =F (%)

Therefore, (25) can be used to obtain the sequence of vectors F(n)(;)
of (16a) recursively in terms of the given sequence of vectors Fn(E) =
[Fn(x)] _ given by (15a). This can be best visualized from the trian-

X=X
gle of Fig. 1. For example,

(1)

= 2
F F1 ¥ LlFO (27a)
(1)
F°7 = Fy + L F + szb (27b)
2
F( ) = F(l) + L F(l) (27¢)
1 1
F(l) =F, + L F + 2L.F + L_F (27d)
2 3 172 271 370

10



F(z) = F(l) + L F(l) + L F(l) (27e)

1 2 11 2
F(B) = F(z) + L F(z) . (27f)
1 1
o)
R =F

FI(2) (3)

3 F
n (2) (3) {4
/F4 /:3 /"2 /Fl F

Fig. 1. RECURSIVE TRANSFORMATION
OF AN ANALYTIC FUNCTION UNDER EQ.
14).

Now, using (16a), (16b) with F = x, and (14), followed by differ-

entiation with respect to t, we obtain the following relations for x,

x, g, and £ of (12) and (13)

—_ 2 n —(n) —
x=x+z§—,xn(x) (28a)
n=1
. o0 n
EEED £ a™® (28b)
n=1
and
go(x) = fo(x) (29a)

11



(n) (n)

g, (X)) =f '(x)-q &), n>1, (29b)
where
n-1
x™ e = 4 (30)
d
| =
and
n
(n) =, _ n —(m)
q (x) = 25 Cm X € om (31)
m=1
Finally, the inverse transformation can be written* as
o n
X =x + z 161_' x(n)(x) . (32)
n=1
(n), =(n),

To find the relation between the x s and x s, one may eliminate

X - X between (28a) and (32) and define the vector u(x; €) as follows:

[e] n

u(x; e) = 25 fT x(n)(x) (33a)

(33b)

i
I -
!
gl
H]
~~
=1
N
~~
N’

Comparison of the above equation with (15) and (16) leads to

*
This is useful in constructing the integrals of motion, the initial con-

ditions of (13) from the corresponding initial conditions of (12), etc.

12



u

u (x)

(n)

(x

) =

(34a)

(34b)

(34c)






Chapter II1

SIMPLIFIED GENERAL EXPANSIONS

Given the sequence of vectors Fn’ F and FO’ there are

EPTREE
two separate approaches to the construction of the required sequence of

F(n)(n > 0). The first is Deprit's approach [1] for Hamiltonian

)
n

vectors
equations; Deprit introduces the auxiliary functions and moves re-
cursively from the left diagonal of Fig. 1 to the right diagonal. In the
F(n)UJZO)

by introducing a suitable

second approach, introduced by the author [2], one constructs

O D ana 7@

only in terms of Fn’
linear operator. This approach was found useful in constructing the in-
verse transformation and simplified general expansions. To show how this

can be done, let us write (25) as

n-1
1 -1 K
p¥) _ ptl) Pl Ff® o L S1, k>0 . (35)
m m+1 " n-m-1 - -

By successive elimination of the vectors on the right-hand side of the

above equation, one would eventually obtain F(k) in terms of F(k+n),
(k+n-1) x) " (k)
F yessy, and F ., Thus one may assume for F the form
(k) (k+n) < n (k+n-3j)
Fol = F —ZC.G.F . a>1, k>0 , (36)
n J J - -
j=1

where Gj is a linear operator which is a function of Lj,L and

51000

L Substitution of (36) into (35) yields for Gj the recursion relation

1

j~1
G, =L, - L 6 ., 1<3i<n . (37)
I o2 J

For example,

G, =L (38a)

15



G, =L, - L,L (38b)

= - - - (380)
G3 LS Ll(‘L2 L1L1) 2L2L1 .
For k =0 and k =1, (36) yields
n .
F(n) =F + 25 ch G. F(n—J); n>1 (39)
n J J -
Jj=1
1) (n+1) 3 n (n-j+1)
F'l o= F —ZC.G,F IV a>a1 . (40)
n J J —
j=1
Also, if we define GjF(l) as Fj i (39) and (40) can be written in
b
the form
n
F® z c®r (41)
n J J,n=]
Jj=1
(1) @D << .n
F''/ = F - Z cF.. (42)
n j j,n-j+1 ,
j=1
where
P, =1 D) _ z Ity . (43)
J,1 J m m+l  j-m-1,i
O<n<j-2

Combining Egqs. (14) and (20) and making use of (21), (22a), and (42) with
—=(n)
X

F = x, we are lead to the general recursive relation for of (28a)
— -1 —
=™ _w . z ¢ctx., ., n>1 (44a)
n J J,n=] -

15;5@—1

16



where

Using

L

(41) with F

u

2.

O<m<j-2

of (33), we obtain for x

j-1
m

. 4
I"m+1 xj—m—l,i (44b)

(n)

the general formula

£ - x® z %X, ;n>1, (45)
1 J,n-] -
1<j<n-1
where ;j -3 is as defined for (44b). Now, x(n)(x) of (32) is simply
, N~
given by
(n) n
X (x) = [x ]i=x . (46)
Using (29), (31), and (42), one should obtain (after some relatively te-
dious algebraic manipulation) the following simplified general recursion
relation between the vector g of (13) and the vector f of (12).
go(x) = fo(x) (47a)
n-1
g(§)=f(§)+z e ™t ] ow L,
n n J-1 7§ n-j J J.n-j o B
j=1
where
j-2 3
— t - 1
Bj,i 7 M8 ZE Cn m+185-m-1,1 (48)
m=0
LF=F *W, -W_+F (492)
J ; J Jix

17



and

L' w =—Ll;f . (49b)

Note that Eq. (41) does not require the Fn's to be the given vec-
tors. In fact, (41) has the nice property of constructing the Fn's
from the F(n)'s. This can be valuable in reducing the computation re-~
gquirements when the given p?rturbation is limited in order., To show how
this can be achieved, let X = g(;;e) = g0-+6g1 be the given differen-~
tial equations, then in view of (48), we find gj,i =0 for i >2 and
j > 1. Making use of this fact and Eq. (47), we acquire the desired re-
duced formula for constructing the transformed differential equations
x = f(x;€), where f(x;€) = f(E;e)];;X.

Equations (47) to (49) are directly applicable to nonlinear resonant

problems in which*
(50a)

cu(@,6; €

‘50b)

e
I
H
1]

w(@) + ev(a,B;¢)

where u(x,0;€¢) and v(Q,B;¢) are periodic in 0. It is desirable to

transform to a new vector

Ql

(61)

%1
1

@l

*
A second-order expansion for this system of differential equations was
obtained by Morrison [9], using a technique similar to that developed
by Krylov and Bogoliubov [51.

18



so that the resulting gn(n > 1) will contain only certain slowly vary-
ing combinations of the .g elements. Equations (47) to (49) can be used
to define the Wn's successively so as to remove all "short-period" terms
from the gn's; such a Wn is unique up to an arbitrary additive long-
period vector. It should be mentioned that, in the present case, the

W 's are easily obtainable through solutions of simple linear partial-

differential equations of first order.

When no resonances occur, one can construct the transformation
x = x(x;¢€) , (52a)

which reduces (50b) to the form

cu (@, -; e
(52b)

w1
Il

]
il

w@ + ev(a, - ;€ -

Then the solution of the original system (50b) reduces to solving the
differential system of equations é = eu(&;e) and quadratures for 6.
Through the transformation (52a), we get the solution of (50b). In this
case, the initial conditions for (52b) are obtainable from the correspon-

ding initial conditions of x through the inverse transformation (32).

bd
It is interesting to observe that, if we replace x by [X}, X
W t
by [%], and W by Egﬁ] and if f can be generated from a Hamiltonian

® n
H(x,X,t;¢€) = z % H (x,X,t), i.e., f= _’Ii ,
n=0 1%

then g can also be generated from a Hamiltouian.

n "y

o0
€ - .
K(y,Y,t;¢) = Z 'ﬁ—!' Kn(y,Y,t), i.e., g = -K ’

n=0

19



such that (47) to (49) reduce to the scalar form [2]

KO = Ho(y,Y,t) (53a)
n-1 n-1 n-1 Dwn
K =H Y,t) + cC.,Lw"H _.+C, K, - |-— 53b
n = HOO z [J—l 3 -3 7 7 J,n-J] Dt (53b)
Jj=1
where
"
f = . - .
Lj fy wY fY wy , (53c)
DwW
B _ - 53d)
Dt wnt Ln H0 ’ (
and
Jj-2
X 1" ok (53e)
Kj,i - Lj X 25 Cn m+l jem-1, i e
m=0

Thus, one may say that the theory of perturbation based on Lie transforms
is an important special case of the present theory in which the analysis
of a 2N-element vector is reduced to the analysis of a single scalar func-

tion, the Hamiltonian.

The foregoing analysis now suggests a general simplified procedure
for systems which are mainly represented by a Hamiltonian with some lesser
perturbing forces nonderivable from a potential. To show how this can be
done, let us take the system described by (8a) and (8b), obtained for the
physical system described by (1). The procedure suggested here is to

tackle the problem in two steps:

(1) A canonical transformation from (x,X) — (y,Y) in which we can
apply (53) and define the Wy's successively so as to remove
all the undesirable terms (e.g., short-period terms) from the
Kp's. Since the transformation is canonical, we should satisfy
the constraint

20



%X BX - X * 5x - BH =y . 85Y - ¥ - By - 8K (54)

on the right-

To allow for the vectors -€Q - ay and €Q - ax
hand side of (8), we should add the scalar quantity €Q + dq
to both sides of (54). If
=) el’l
Q= Z E Qn(xrx:t) ’
n=0
then, by using (16a) with F =Q and q, we get
o El’l
F =) a7 @ N (552)
n=0
o0 n
¥ = £ v (y,Y,t) (55b)
n! n R | ’
n=0
where
n-1
n-1 _(m) (n-m-1)
v_ = nY-chm Q - ay , (56a)
m=
n-1
- -m-1
V =-K +zncnlq(m)-q(nm) ; (56b)
n ny y
m=0
n
(n) n (57a)
a = C. q, ., n>1
z J J,n=) -
j=1
j-2
n (i) j_l n
= - 57b
qj yi L;j 4 z G0 lma Clj-m—l, i’ ( )

21



(2)

q(O) =q(y,Y) H (57c)
Q(n) —.Q' (y,Y,t) + N c” q .n >0 (58a)
o 25 3 Tdm=3 =
j=1
and
j-2
_ i (i) J—l "
Q1 7Ly @ - Z % Twa Yoper, 1 - O8D)
m=0

A noncanonical transformation from (y,Y) to =z in which

n
S

z = g(z,t;¢) = z - gn(z,t) . (59)

n
n=0

Now, from Eqs. (47) to (49), we get

go(z,t) = fo(z,t)

2 n-1 n-1 Dsn
(z,t) = f (z,t) + [c, L'f . +C. -—
En a0 3173 T3 T % Byneg) DR 00
j=1
where
n
fn(z,t) =y n>0 |, (60b)
n
j=-2
J
= L°* - t
ngl g5 ZE Cm Lm+1 g_j—m—l, i’ (60c)
m=0
DS
—B_-s -1t (60d)
Dt nt no °’

22




and the rest of the undesirable terms in the fn's can then
be eliminated by the generating vectors Sn's.

one can express any vector

It should be noted that, by using (41),

e} En
un(x,X,t)

u(x,X,t;e) = or
n=0

since we have

z,t and g,

directly in terms of

0 n
2 W™ (y,v, 1)

- n!
n=0
o n
= z £ ™z, (61)

n!

n=0
where
(n) 2 n
ut iy, Y,t) = u (y,Y,t) + z CyUyny (62a)
j=
(n) o
1@t = ™ ,v,0)] + z c. U, _ . (62b)
[YJ='Z J J,n—]
Y j=1
. J-2 .1
u. . = LTu(l) - ¢t oL u, .y (63a)
J,i J m m+l “j-m-1, i

m=0

J-2

_ 6] j-1
Uj,l - Lj v ji Cm m+l j-m-1, i (63b)
m=0

23






Chapter IV

PROCEDURE OUTLINE

Consider the system of differential equations in the standard form

L
2

. 1
X = fo(x) + efl(x) + 3T

ez fé(x) + e3 f3(x) +oee. . (64)

The essence of the technique proposed here is to construct the mapping
(x;€) — (x;€), analytic in € at € = 0, so as to achieve specific
requirements (e.g., elimination of short-period terms, suppression of
all angle coordinates, and so on) in the transformed system of differen-
tial equations .

= - - 1 2 — _
X = go(x) + egl(x) + 37 € gz(x) +3—1. e3 g,a(x) +... . (65)

We plan to build the mapping explicitly in the form of power series

x=x 4+ ex @+ € x V@ 4y X 0@ 4., (66
together with its inverse
1 3 (3)
X =X + € x(l)(x) + L €2 x(z)(x) t3r e ¥ G (67)

2!

Under such mapping, any analytic vector Fkx;e) _given by

F(x;e) = Fo(x) + € Fl(X) + 2—1,- €2 F2(X) + 3i' €3 Fs(x) +... (68)
can be built in the form
F(x; €) =F(0)(§) + eF(l)GE) +?1!- 2 F(z)(i) + 3—1,- & F(S)(E) ... . (69)
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We shall describe in full detail the operations performed to carry the
transformation up to third order in €. The Sdheme is basically a re-

cursive one and it is initiated by putting

go(x) fo(x)

F(O)(;)

Fo(x) . (70)

The first-order operation begins by considering the linear partial-
differential relation
- - 1
gl(x) = fl(x) - L W . 71)

fo 1

Assuming that a choice has been made for gl(;), we then solve for

Wl(;) and compute

= Wy

X(1) M

Fi 0= LlF(O)

F(l) =F, + Fl,o . (72)

To prepare for the second-order expansion, we compute ;

At the second-order level, we set up the partial-differential rela-

tion

1 1
8y = fz + Llf1 + gl,l - Lfo W2 . (73)
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The unknown vector 85 is selected in compliance with the goals proposed
for the transformation, and the resulting linear ﬁartial—differential
equation is integrated to yield Wz(;). The step of second order is com-

pleted by computing

=(1)

¥l
o
M

1,1 - ™

;(2) -

x(z) —2(2) + 2%

1,1
)= LlF(l)
Fa,0 =12F(0)'11F1,0
F(2)1= F, + 21«“1,1 + Fz,o . (74)

To prepare for the third-order expansion, we compute

81,2

t 1
gy 1 = L L . (75)

At third-order level, we form the partial-differential equation

L} A \]
gg = f3 + Llf2 + 2L2f1 + 2g1’2 + gz,1 - Lfo W3 . (76)

The unknown vector is chosen, and the resulting partial-differential

equation is solved to yield Ws(;). Then the following sequence of op-

erations will complete the third-order analysis.
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;1,2 =1y

Xp,1 = Ly = - Ly %5 4

5(3) = W3 + 2;1,2 + xz,1

x(3) = —5(3) + 3 §1,2 + 3 ;2’1; 77)
Fp g = LlF(Z)

Fa,1 = LoFy - IvF 4

Fa0° LsF(O)' LiFo 0" 2LyF) o

F(3) = F3 + 3F1,2 + 3F2’1 + F3,0 . (78)

Clearly, the entire procedure can be extended to any order by using
(12), (13), (15), (16), (28a), (32), (41), and (43) to (49). DNote that
fo is not arbitrary. The present theory is restricted to problems which
can be reduced (in some way or another) to a standard form such as (12)
in which £ allows a solution to the partial-differential equations

0
defining the Wn . Some of these problems can be found in the literature

[3,4,10,11].
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Chapter V

EXAMPLES

In the first example,* we consider Van der Pol's equation

G+a=¢d-q2) ¢ . 19)

According to the method of variation of parameters, we solve as a first

step (79) for € = 0. This solution may be put in the form of

A sin ¢ (80a)

Q
I

Acos @ . (Sdb)

Q2
]

In the second step, we consider (80) as the solution of (79). Then,
if we differentiate (80a) with respect to t and equate the resulting
equation to (80b), we find the variation of the parameters A and ¢

are governed by

AS + AfC = AC , (81)
where

S =sin @ and C =cos @
Substitution of (80) into (79) also yields
. . 2 2
AC - A(JS = - AS + eAC[1 - A"s"] . (82)

Equations (81) and (82) lead to the standard form

* i
The algebraic analysis in this example was carried out on the IBM 360
computer using REDUCE language [7].
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2 3
. A A A A
A—G[E (1-—4)+502+—8 04] (83a)
1 A? 1 2
g =1 - G[E (1 - ?) SZ + -8— A 84] ’ (83b)

where

Sn = sin nd and Cn = cos nd

Define x =.[A], then (12) and (83) yield

%)
[0
f = (84a)
0
L1
ré (1 - éﬁ) + A C, + éi C
2 4 2 2 8 4
fl = ) (84b)
1 ( A > 1 2
: 1 3 S2 8 A S4
fn =0 n>1 . (84c)

Now, in the third step of the method of variation of parameters, it

is desirable to transform from x to a new vector x = [%], so that

© en _
= T gn(X) ) (85)

LR

n=0

where g, contains only secular terms. Up to second order, (47) to (49)

yield

g. =1 (86a)

(86b)
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gy = L () + g,) - Wza , (86c)

where

t
LlF = F; . w1 - wh—{ F . (86d)

Choosing W to eliminate the short-period part of gys We obtain

1
is ,E3
4 "2 32 4
W, = ) (87)
1 —2 -2
1(y - A C A_ C
2 )2 " 32 “a
where
s, = sin ng and C_ = cos ng .
Hence,

[N ]

2
¢-5%)
g = . (88)

Computing L;_(f1 + gl) and choosing W2 to eliminate the short-period

part of g2, we obtain

B — — —
L E e B B &g
382 %6 * 62 “a * a2 2 ) C2
W, = . (89)
_K_4-§ I D GAT G A GAT
381 "6 ~ &4 1) %" 32 2

Hence,
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gy, = . (90)

Equations (85), (88), and (90) lead to

(91)

“le
I

1 €2_1+3K2_11,?4
+ 8t 16 256

To express ¢q of (80a) in terms of A and 5, one may use (15a), (i6a),

and (41). This leads to

2
0 1 2
q=q()+€q()+%q(), (922)
where
@ - As, (92Db)
ay ©)
a’ =1L q
— —2 —3
A A\ - A° -
—z(*z)cl‘—zcs (92¢)
@ _ (0 )
a "’ =L +Lpg
A -2 15 —4] =
= -]—-6— [ - A + 6_4A ] Sl (92d)
+ A_3 _SAT g _555_ 5
16 32 | °3 " 1536 5
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In the fourth step of the method of variation of parameters, we wish
to solve the simple equations of (91). As an example, we consider the

periodic solution obtained when

A =2 (93a)

2 ,
g = < - %)t + V() , (93b)

where VY(e) 1is a free function of the small parameter € to be chosen

to satisfy some condition on ¢q. Equations (92) and (93) now lead to

e
]

2
S _-£C e (33 35 %3
251 a C3 + 35 <2 S1 + 383 S ) . (94)

5

w|wm

2 .
Now, if we choose ¥ = ¥, + ey, + (e /2)\]{2 to satisfy qlt—O = 0, one
obtains WO = n/2, wl = -3/8, and wz = 0. The corresponding gq then

takes the form

2
_ 3e 3e .
q = ( 32> cos 6 + vy sin 6

362 €
+ BT cos 30 - 1 sin 36
5¢
56 ¢°s 56 , (95a)
where
e2
6 = ( - '1—6- t . (95b)

Comparing the above equation with [12], one finds that the coefficient of
cos 8 is [2 - (52/8)] rather than [2 - (3/32)62]. The difference is

due to some feedback from third-order analysis since the periodicity con-
dition will yield A=2 - (62/32)] rather than 2.
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It might be noted that the foregoing perturbation developments can
be carried out directly in terms of the physical variables, i.e., q and

q = p. To show how this can be achieved, we consider the nonlinear dif-

ferential equation

© n
.. € .
d+q= zg -~ hn(q,Q) . (96)
n=1
Let
q A sin ¢
X = = N (97a)
P A cos ¢
and
_ E A sin a
x =1 _[=]_ _ . (97b)
P A cos §

In view of (96), and by making use of the definitions of P and x,

we obtain

p
X = o n . (98)
€
-q + Z a7 b (,p)
n=1
Comparing (12) with (98), we get
[
P
fO = ’ (99a)
-q
[ o
f = n>1 . (99b)
n —
hn(qu)
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Let

wn
1
Wn = . (100)
W .
fa
Now, by using (100) and realizing the fact that q = - Op/d¥ and

P = 0q/9¢, Eq. (47b) can be reduced to the form

awnl A _ ]
— - W, ¥_ (q,p)
og 2 1
= ’ (1013.)
Wy,
2 - —
— + wn Fn (q) p)
| o7 1] P2
where
Fnl(Qs p) n-1 - 1
=f -g + c. ;L. f . +cC., g, .| . @oip)’
- - n n J-1 "3 "mn=j J Jsn=j
F_ (a,p) j=1
T
Equation (10la) now leads to
2
O"Wn, OFp,
— + wn = — - Fn ’ (1023)
a¢2 1 og 2
My,
w = -F . (102b)

In view of (12) and (97b), g, must be constructed in the form
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an(K) sin @ + bn(K) cos @
(103)

[1ie]
n

an(A) cos @ - bn(A) sin &

where an(K) and bn(K) are chosen to eliminate the coefficients of

sin § and cos @ from (BFnl/BE) + Fp, of (1022) (otherwise Wy, —will
be unbounded). Note that the operations involved in obtaining Fn1 and
Fn2 of (101b) are carried out in terms of a and 5. Then, for the
computation of Wnl and an, we substitute q and p in terms of A
and . After these computations have been performed, we go back from

A and ¥ to q and P to obtain wnl(E,E) and an(a,g) which are
to be used in the operations of the next step. The cycle is then repeat-
ed until we reach the desired order of perturbation. Now, substitution
of a and 5 in terms of A and 5 in (12) will lead to the desired
equations for j and 5. Also, the vector x can be constructed in

terms of x by using (32) and (44,.

The transformation of the ordinary differential equation (96) to
the partial-differential equations (102a) is similar, in spirit, to the
methods of Poincare’ [13], Kevorkian [14], and Nayfeh [15]. The equiv-

alency, however, is still an open question.

As an application of the above procedure, we consider the linear

differential equation

d+q=-2eq , (104)
whose exact solution is given by

1/2

q = KOEGt sin [(1 RN t + 50] , (105)

where Kb and E% are arbitrary constants. Using Egs. (96) to (104),
one can easily verify that the second-order analysis leads to the follow-

ing results.
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P
gO = _ ’
~-q
.
-q 0]
g1 = — H wl = — ?
-p -q
- -J L. ..|
= i
[ [ o
g2 = — [] w2 = - .
L a L—p
In view of (13), (97b), and (106), we get
- —_ 2 —
q -eq + (1 - €/2)p
= (107)
= —_ 2 -
p -ep - (1 - €/2)q
Substitution of E and ; in terms of A and B in (107) leads to

>

= -eA ,
(108)
F=1-¢cy2
The solution to (108) implies that
q=A c-:-_et sin [kl - €2/2)t + 7 ]
0 0
(109)
—_ —-— =€ -
P =Ace t cos |(1 - €2/2)t + @ 1
(o} 0l

Using (28a) and (44) with x

= [%], we obtain
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This is seen to agree with

frequency of oscillation.

q
- 2
-eq + (1 - € /2)p .

the exact solution to within

38
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Chapter VI

" CONCLUS ION

A perturbation expansion to arbitrary order is presented. The ap-
plication to nonlinear oscillation problems has been discussed and il-
lustrated by two examples. Although our investigation has been limited
to systems described by ordinary differential equations, the method is
applicable to some other systems described by partial-differential equa-

tions, as in the fields of plasma oscillations, fluid stability, etc.
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